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ABSTRACT: This paper discusses factorial kriging from a viewpoint of linear system theory.
Factorial kriging is presemed as a parallel linear system of filters with a constraint on the output
factorial components and a constraint on the linear system. For a stationary random function (RF),
simple factorial cokriging (SFCK) may be shown to be equivalent to the Wiener filter. When ordi-
nary cokriging is used to estimate factorial components, the procedure can be called ordinary fac-
torial cokriging (OFCK), which may be considered as a generalization of the Wiener filter. Both
SFCK and OFCK are developed in matrix forms. Subsequently, factorial filters can easily. be cal-
culated using the matrix solutions of kriging systems. Examples are provided to show applications

of the methods as well as the calculation of factorial filters. |

Keywords: simple factorial cokriging, ordinary factorial cokriging, Wiener filter, system theory,
‘matrix formulation, block matrix inversion. -

INTRODUCTION

Itis well known that kriging is commonly used as an interpolation tcéhniquc. Recent publi-
cations have shown an increase in the use of geostatistical filtering techniques. Chiles and Guillen
(1984), Galli et al.(1984), and Zhang and Galli (1992) used kriging for geophysical data filtering.
Sandjivy (1984) used kriging for geochemical data filtering. Ma md Royer (1987, 1988), and Con-
radsen and Nilsson (1987) developed kriging filters for remote sensing image processing. Daly et
al. (1989) presented microscopic image filtering. Jaquet (1989) used kriging filtering techniques in
petroleum exploration for mapping the thickness of a gas reservoir. '

Different combinations of kriging were used for filtering. Some were variations of ordi-
nary kriging with a particular combination of geometrical configuration (e.g., Conradsen and
Nilsson filter). But almost all of the referenced works use factorial kriging in the filtering applica-
tions.

In this paper, factorial kriging is presented as a parallel linear system of filters. Factorial
kriging has a constraint on the output components, and an additional constraint in the case of
OFCK. Autokriging techniques estimate unknown points of a variable using available data of the
same variable. Cokriging, on the other hand, estimates unknown points of a variable using data
from the same variable and other related variables. Both autokriging and cokriging are interpola- -
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tor. In contrast, factorial kriging decomposes an initial RF into several components, and the com-
ponents need to be estimated by the initial RFs known values due to the lack of autokrigeability.
From this point of view, factorial kriging can be viewed as a particular case of cokriging where
the primary variable does not have any autokrigeability.

The spatial correlation modelling is not discussed in this paper. Instead, it is assumed that
the phenomenon under study contains two or more underlying processes, which has been previ-
ously modeled by a nested covariance. Thus, based on the matrix formulation of autokriging (Ma,
1987) and cokriging (Myers, 1982), estimation of the filtered components for simple factorial
cokriging is formulated in a matrix form. Since ordinary factorial cokriging is a constrained sys-
tem, it will be formulated in a block matrix equation, and solved by a block matrix inversion for-
mula. Hence, the weight vectors of factorial kriging are expressed as a function of the covariance
and the constraint, and the results are clearly determined.

FACTORIAL KRIGING
FROM A VIEWPOINT OF LINEAR SYSTEM THEORY

In linear system theory, if the input to the system (Fig.1) is a stochastic process Z(x), then
the resulting output ¥(x) is given by

+00 -

Y(x) = jz(x-a)z.(a)da (1)

which is also a stochastic process (Papoulis, 1977, p.305).

Zx) —»] L |} ¥x)

Fig.1 Linear System

The linear system L can also be interpreted as a linear filter in the sense that the output RF
Y(x) is a filtered process of the input RF Z(x) (Roubine, 1970, p.117).

From a viewpoint of the linear system, factorial kriging is a multi-component filtering pro-
cess. The input is a stochastic process Z(x), whereas the output is p ¢lementary stochastic pro-
cesses Yj(x), as illustrated by Eq. (2) and Fig.2.

p
Zx) = Y1) 2)

i=1

where the RFs Z(x) and Y(x) generally are not zero-mean processes.
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Fig. 2 Factorial Kriging

This multi-component filtering can be seen as a linear system with p parallel filters A,, as
shown by Fig.3.

L
A, Yy(x)
Zx) —ot—t Yi(x)
A,
Yp(x)
Fig. 3 Parallel System of Filters

Theoretically, the system L should have an infinite memory with the integral from - oo to oo as
shown by Eq. (1) (Newton, 1989, p.86). In real applications, only finite-order systems can be real-
ized. Thus, each resulting output RF Y(x) can be characterized by the following discrete convolu-
tion equation with the order equal to N.

N
Yi(x) = X Z(x-o) A (o) (3)

oa=-N

where the ith factorial component Yj(x) is filtered from the initial RF Z(x) by the ith parallel filter
of the linear system L.

In most applications, the initial RF Z(x) does not have zero mean. The decomposition of
the mean into different components is somewhat arbitrary (Matheron 1982, p. 5), but may be
determined by the physical characteristics of the application. Without loss of generality, it is pref-
erable to separate the mean in the decomposition model. Thus, Eq. (2) is rewritten as

P
Z(x) = 2 Y, (x) +M(x) 4)
i=1

where the input RF Z(x) has the mean M(x), which is not necessarily stationary, but the output



components all have zero mean.

Eq. (4) is the general decomposition model of factorial kriging. When M(x) is zero, the RF
Z{(x) is a zero mean process. When the RF Z(x) is stationary, M(x) is a constant. When the RF Z(x)
is quasi-stationary (Papoulis, 1977, p. 302), M(x) varies slowly. When the RF Z(x) is intrinsic of
order k, M(x) is a drift.

With regard to the conventional linear system, factorial kriging can be seen as a filter with
the following constraints: .

<1> The output component RF Y (x) is subject to the orthogonal condition

<Y, (0, ¥ (x+h) > = Cyy(h) =0 for i#j (5)

where C vy, (h) denotes the cross-covariance function between the components Y; i(x) and Y; (x)
<25If the input RF Z{(x) is not stationary, the linear system L should be constrained by the
non-bias condition, which will be discussed in the ordinary factorial cokriging section.

The input RF Z(x) to the system is sampled, whereas the factorial components are not
directly sampled. Therefore, the components need to be estimated by cokriging, using data of the
initial RF Z{x). If the initial RF Z(x) is second-order stationary, the system L is not subjected to the
universal condition. Then, simple cokriging can be applied to estimate each output component
Y(x). This procedure can be called simple factofial cokriging (SFCK). If the initial RF Z(x) is
locally stationary, the linear system L should be constrained by the non-bias condition. Then,

ordinary kriging can be applied to estimate each output factorial component Y;(x). The procedure

can be called ordinary factorial cokriging (OFCK).

~ The estimation of each component Y(x) reduces to finding the convolution function
A, () of Eq. (3). In a discrete case, A, (@) is a weight vector. The weight vector can be obtained
by solving either the SFCK or OFCK equation in matrix form. Then, the factorial filters can be
easily calculated.

SIMPLE FACTORIAL COKRIGING

Consider a second-order stationary RF Z(x). Since the mean m of RF Z(x) is a constant
value, Eq. (4) can be rewritten as:

Z(x)-m= 3 ¥,(x) ! (6)

i=]

Because of the orthogonality between the different component RFs Yj(x) and Yj(x) given
by Eq. (5), the following additive relationship of covariances is obtained:

P
Cz(h) = 3, Cy,(h) (7
i=1



where Ci( h) is the auto-covariance function of the initial RF Z(x), and Cy(h) is the auto-covari-
ance function of the ith component RF Y(x).
The ith stationary component RF Y(x) can be estimated by the linear combination

) = Y AMZ(xy) —m] =,/\; Z, fori=1I,..,p (8)
=1

where Z. is the zero-mean data vector of RF Z(x), and s/\‘,- is the kriging weight vector (where the
superscript t denotes the transpose, and the left subscript sf indicates simple factorial cokriging)
as given in the following -

:/\: = [}'i.l’ Ay e 7":,,1 for i=1,..,p (9)

Z, = [20), Z(y), . Z(x,)] ~mut = Z~mu . Qo)

. t
where u is the (n X 1) unit vector # = [l, 1.., 1] . ‘
The variance of the estimation error vc,z is given by

o0 = E{[¥{x) - ¥;" ()] [¥{x) - ¥;"(0))')
= E{[\,(0) - A Z] [¥,(0) - A Z]")

]

E[Y?(x) -2 Y,(x):/\: z,+:/\; z.Z; A)
= Cp,(0) =2 A, Cpz+ N, Cr A, (1)

where C Y, (0) is the variance of the ith component RF Y{x), C v,z denotes the (n X 1) vector of
cross-covariances between the component RF Yj(x) and the initial RF Z(x), and Cz; denotes the (n
X n) matrix of covariances between sample locations for the RF Z(x) in the kriging neighborhood
as illustrated by Egs. (12) and (13)

4 .
Cyz = [Crz(x=x). Cyz(x=x), ... Cyz(x =] (12)
[Ce 2y =) Cu(xy=xp) .. Cprlry—x,)]
Cu(xy—x9) Cp (x?.—xZ) v Gy (xZ"xn)
Cpp = ‘ (13)

_Cu (x,- xl) C,(x,— X)) ... Cu(x,- x,,)_
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Minimizing the kriging variance of Eq.(11) yields

Coz N =Crz  fori=1..,p (14)
Because the different components Y;-(x) and Yj(x) are orthogonal, the cross-covariance CY,.Z(h)
between the component Y;(x) and the initial RF Z(x) is equal to the auto-covariance CY.~ (h) of

the component Y(x), as shown by the following development:

Cyz(h) = E{Y,(x) [Z(x+h) ~mj]}

= E[Y,(x) (IZP: Y, (x+h) fmz)] =Cy() fori=1,..,p (I5)
=1

Thus, Eq. (14) can be rewritten as

Czz ,,‘A,_ = Cy, for i=1,..p (16)
where CY' is the vector of auto-covarianccs of the ith component Yj(x).
Equation (16) is the simple factorial cokriging system for the component Y;(x). The krig-

ing weight vector, ;/\: , can be obtained by pre-r\nultiplying both sides by ‘C;'z . Then, the trans-
pose of the resulting equation yields

’/\: = C‘Y,C;Z fori=1..,p (17)

Substituting Eqs. (15)-(17) into Eq. (11), the kriging variance of the ith component can be
simplified to
52 = Cr (0) - CyCzCy, (18)

-

Eq. (14) is the conventional normal equation for the Wiener filter. Simple factorial cokrig-
ing of~Eq.(l6) can be considered as the Wiener filter with an a priori orthogonal decomposition
model given by Eq. (5). More generally, both the interpolation kriging (autokriging and cokriging),
and the filtering kriging have the similar formalism to the Wiener filter. This similarity was first
shown by Ma (1987), and later noted by several other authors (Ma and Royer, 1988a, 1988b; Olea,
1991, p. 71; Daly, 1991; and Deutsch and Journel, 1992, p. 62). In other words, simple kriging is
formally a variation of the Wiener filter. Ordinary kriging and universal kriging are generalizations.
One historical difference is that the Wiener filter was originally used for filtering, mainly in electri-
cal engineering, whereas kriging has been essentially utilized for interpolation, especially in earth
sciences. Another difference is that the Wiener filter was originally developed in one dimension,
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called time series, whereas kriging has been, trom the beginning, formulated in three dimensions.
but can be applied to one or two dimensional variables. In the following sections. by convention. the

RFs Z(x), Y;(x) denote one, two, and three dimensions. i.e. x can be considered as a vector.
ORDINARY FACTORIAL COKRIGING

When the RF Z(x) is only locally stationary, its mean mgx) is dependent on the location.
Then, the decomposition model (Eq. 4), the orthogonal condition (Eq. 5) and the additive relation-
ship of covariances (Eq. 7) should be studied in a locally stationary kriging neighborhood, N.

The ith component RF Y,(x) can not be estimated by Eq. (8) unless the local mean has
been previously estimated (see Ma, 1987, p.46-47; Ma and Royer, 1988a, p.21). An alternate
method is to estimate a component Y,(x) by the initial RF Z(x) with zero-mean constraint, as
shown by

i=1

V)= ¥ MZx) = AZ (19)

> M=0 - or Aiu=0 (20)

i=1

where oﬂ\ti is the kriging weight vector for the ith component RF Yj(x) (where the left subscript of
indicates ordinary factorial kriging), and Z is the vector of the RF Z(x)’s known values in the sta-
tionary kriging neighborhood N,

o/A: = l:xi,l’)"i,Z""’)“i,rJ | for i=1,..,p ]
Z=[2(0),200), . 2(x)]  for xee N, el

From Eq. (19), the estimation error ofof in the mean square can be written as

07 = EL¥{x) = ¥i*(x))2 = E[¥i(x) - o', 2]
= Cyi(O) —20/\: CY,'+0/\:' Cz o/\,- ' (22)

where C v, = o Yz from Eq.(5) is applied.

Based on Egs. (20) and (22), the objective function is obtained

¢(o/\i’ oju'i) = C.(O) ;2ojA:CY.~+o/\:CZZ "fAi+2(u‘o[Ai— l)ojp'l , (23)

Minimizing ¢ with respect to the vector ,A; yields the following matrix equation

Czz 0A1+“oﬂa =Cy, (24)
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and the constraint equation (20)).
Combining Eqgs. (20) and (24) vields the tollowing block matrix equation

e all Al e ;
|4 o | = ' f . . .
Lu' 0 L}* | ()Jl for = L. (25)

where C, is the covariance matrix of the RF Z(x)'s known values as defined by Eq. (13). 5 is
the Lagrange multiplier. and Cy; 1s the auto-covariance vector ot the ith component RF Yi(x) as
defined by Eq. (12).

Since the covariance matrix Cy, is positive detinite, Eq. (25) can be further developed as fol-

AR R I

where the (n X n) matrix P, the (n X 1) vector R, the (1 x n) vector S, and the scalar T can be

lows:

obtained by applying a block matrix inversion method (Ma, 1987, 1993)

T=—(u'Chu)™

R = Chu (u‘C}‘Zu)'l
S = (W'Clu)"u'Cy,
P = Chh(I—u(u'Capu) ' u'CHy) (27)

where I is the (n X n) identity matrix.

By substituting Eq. (27) into Eq. (26), the weight vector and the Lagrange multiplier are
obtained: -

: - - -1 —
A= (P-Cp)t = Cy Cop[ 1= (u'Cpu) " uu'Cy] (28)
RS G
S =8 Cyp = WCq ) uCCy for i=1,..p
Pre-multiplying both sides of Eq. (24) by the vector ,A'"; yields

o/\:CZZ ofAl' +o/\: uofui = a/\:cyi : (29)

Then, by substituting the quantity 0/\:6' 2z o ©f Eq. (29) into Eq. (22), the kriging variance is
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simplified as follows:

je]
f

Cy () =2 A Cypv A Cqp A

aof i

]

Cyi (()) _qu: C'y - .'{/\: u :i,’“l

It

Cy (0) = A Cy for i=1,..,p (30)

where the constraint o/\:. u = 0, provided by Eq. (20), is applied.

In the same way, the local mean my(x) can be estimated using the known values of the ini-
tial RF Z(x) in the kriging neighborhood.

mixg)= Y, 0)\: Z(xy) = N Z G31)
a=1 R

210,7‘: =1 or  Mu=l (32)

where Z is the vector of the RF Z(x)’s data as defined by Eq. (21), and ofA’m is the weight vector
for the local mean as defined by '

o/A:n = [k;)‘i A'::z]

Using ordinary kriging for estimating the local mean leads to the following solution (Ma, 1993):
. ( Ic'l -1 TC—I
ofrn = (@ Czzu) wCazy (33)

-1 -1
oy = = (W)
Y
and the kriging variance for the local mean is given by

o, = Elm(x) -mS ()] = A Cp A,

of 'm
o |
= - p, = (W'CZm) (34)

From Egs. (28) and (33), it is seen that the kriging coefficients of the ith component RF Y(x) are
dependent on the auto-covariance functions of both the initial RF Z(x) and the component RF
Y{x), whereas the kriging weight coefficients for the local mean are only dependent on the auto-
covariance of the initial RF Z{(x).



EXAMPLES OF APPLICATIONS AND CALCULATIONS

Factorial kriging can be applied to filter out a component of a stochastic process. For
instance, if the sample variogram is modeled by nested structures, the component corresponding
to each of these structure can be filtered. Due to its mathematical generality, factorial kriging has
been applied to geophysical and geochemical data interpretation, remote sensing image process-
ing and petroleum exploration. Furthermore, it is also possible to utilize this method for post-pro-
cessing of simulated data. Indeed, in some stochastic imaging, the simulated data have a higher
nugget effect than the sample variogram (Deutsch and Journel, 1992). In such a case, it is possible
to filter out the extra noise component using factorial kriging. '

The following will show the calculation of both low-pass and high-pass filters using ordi-
nary factorial kriging. As an illustration, the calculation is limited to a dichotomous decomposition

Z(x) =Y(x)+N(x) . (35)

where the local mean is assumed to be incorporated in the first component Y(x). In other words,
the second component N(x) is a zero-mean process. Consequently, the filter of the component
Y(x) is a combination of the equations (28) and (33):

_—

-1 -1 _
Ay = WCqu) T w'Chy + CyCq[1- (e un'cyy] (36)
and the filter of the second component N(x} is given by
t Ct C"l [I"‘ ( tc—-l )'1 lCr—l]
of'n = CnC2z ulzzi) uuwlyzz 37

1. The variogram consists of a nugget effect plus an exponential model

5

Y(h) = §+-5-Exp(a = 12)

For this variogram, if a 2D (3 x 3) regular grid is used as the kriging neighborhood, the
low-pass filter for éstimating the component Y(x) is calculated by means of Eq.(36)

0.09 0.11 0.09

111 |
' 1
A= (011 020 0.11|= 5|1 2 1 » (38)
0.09 0.11 009 U 11




The high-pass filtci‘ for estimating the component N(x) is calculated by means of Eq.(37)

[-0.09 -0.11 009 | [-1 -1 -i
A= |-0.11 080 -0.11|=~5-1 8 -1 : (39)
-0.09 -0.11 —0.09 -1 -1 -1

2. The variogram consists of a m:gget effect plus a spherical model

Sph(a = 12) O<h<a

K=

Y = 7+

Similar to what was done with the previous model, the low-pass filter for estimating the
component Y(x) can be calculated using Eq.(36)

; ,
2 (40)
1

The high-pass filter for estimating the component N(x) can be calculated using Eq.(37)

1
Ar=]01 04 0.1|=552

005 0.1 0.0 [
20
1

N 0N

0.05 0.1 0.05

-0.05 0.1 ~0.05| -1 -2 -I
¢ 1z
Av=[-01 06 -01|=55l-2 12 -2 | (41)
-0.05 -0.1 -0.05 -1 -2 -1

3. Pure nugget effect (a white noise process)

For a variogram with pure nugget effect, there is only the nugget component and the
mean. However, since ordinary factorial cokriging is, in most cases, applied with a moving neigh-
borhood, the mean is re-estimated for each kriging neighborhood. Hence, the mean can also be
considered as a component. Thus, the dichotomous decomposition given by Eq. (35) reduces to

Z(x) =M(x)+N(x)

The kriging weight vector of the mean component, which is a low-pass filter, is then directly cal-

culated by Eq. (33) instead of Eq. (36). The high-pass filter is still calculated by Eq. (37). The
results are, respectively,

11
11 (42)
11



and

- - 1=t -1 -1
/ o/\~=§—i 8 -l " | (43)

The filter (42) is the traditional moving average, and the filter (43) is the 2D Laplacian filter. So,
when the random process is not completely a white noise, neither the traditional moving average
nor Laplacian filter is optimal in the sense of Wiener. Since factorial filters take into account the
spatial correlation of data, they are statistically optimal. Indeed, by comparing the filters (38),
(40) with the filter (42), it is easy to understand why the traditional moving average smooths too
much for a non purely white noise random function.

CONCLUSIONS

Factorial kriging has been presented from a standpoint of linear system theory. Simple fac-
torial cokriging can be considered as the Wiener filter with an a priori orthogonal decomposition
model. Ordinary factorial cokriging can be viewed as a linear system with a constraint on the out-
put components and a constraint on the filter.

Both SFCK and OFCK were developed in matrix form. By using the block matrix inver-
sion method, the weight vector for OFCK was scparétcd from the Lagrange parameter. Hence,
when kriging is applied with a local moving neighborhood, the factorial filters can easily be cal-
culated using the matrix solutions of SFCK and OFCK.

Factorial kriging can be considered as a particular case of multivariate kriging. This geo-
statistical filtering technique has been applied to diverse fields of the earth sciences. Due to its
mathematical generality, it may have other potential applications, including non-stationary signal
filtering and post-processing of stochastic simulations.
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